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ABSTRACT 
A new finite volume (FV) method is proposed for the solution of convection-diffusion equations defined on 
2D convex domains of general shape. The domain is approximated by a polygonal region; a structured non­
uniform mesh is defined; the domain is partitioned in control volumes. The conservative form of the problem 
is solved by imposing the law to be verified on each control volume. The dependent variable is approximated 
to the second order by means of a quadratic profile. When, for the hyperbolic equation, discontinuities are 
present, or when the gradient of the solution is very high, a cubic profile is defined in such a way that it 
enjoys unidirectional monotonicity. Numerical results are given. 
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INTRODUCTION 

In some of our preceding work we described several 1D techniques for the FV solution of 
convection-diffusion problems, based on the use of a profile for the dependent variable, which did 
not need the volumes to be equal and which, by the study of the normalized variable diagram 
(NVD), yielded intrinsically monotonic behaviour1. 

In that paper we showed how a weighted v-splines approximation of the local behaviour of the 
unknown physical variable can yield a very accurate treatment of the problem. 

We are not proposing a 2D version of that method here; actually, although we believe such an 
extension could be extremely effective, we are trying to build a very simple profile (quadratic on 
most of the domain), which provides a very interesting point of view and which will be of value 
in comparison with any other results. The main points on which we are focusing are an adaptive 
definition of volumes, a smoothing technique for the regions where oscillations are detected and 
an accurate approximation of boundary conditions on polygonal regions. 

The main advantages of the method we are presenting are the third order of approximation of 
the convective term on uniform 1D grids (the second on 1D and 2D non-uniform grids, with 
significant differences in volume sizes) and a cell-centre approach, which seems to be the best 
choice for incompressible fluids2 (and this is of relevance to us since we work on the solution of 
Navier-Stokes' equation). 

Several FV methods have been proposed in the literature for convection-diffusion problems, 
and some of them are rather effective3. 

For most of the FV methods based on a structured domain discretization, with a finite 
difference approximation of the physical variables, it is compulsory to work on rectangular 
regions with a uniform subdivision, i.e. with all the volumes identical rectangles. 
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Since obviously not all real-world problems are defined on rectangles, two are the typical choices 
for their solution: a transformation of the physical domain into a computational rectangle4 or the 
solution on the domain as given, by means of not necessarily equisized or equishaped volumes. 
We chose the second alternative, which is much more flexible and yet it can easily be 
implemented, thanks to the good approximation of boundary conditions. 

The basic idea of our method is rather similar to that inspiring QUICK5, where a weighted 
quadratic interpolation is used for the local approximation of the convective term (while the 
diffusive part is approximated by centred differences). In QUICK the behaviour of the convective 
term on a face of a given volume (in 2D) is obtained on the basis of five proper nodes of a 
structured regular mesh. The choice of nodes depends on the velocity direction, in order for the 
approximation to exhibit an upwind character. 

If the velocity components ul and vl are positive, the points involved in the approximation of 
the dependent variable φl on face l are as in Figure 1 and the value for φl is 

With respect to boundary conditions, QUICK works as in one dimension, i.e. some external 
fictitious points are introduced and the profile is used also at boundary volumes. The order of 
approximation of the method is the second6. In our method, as will be clear in next section, the 
interior of the domain is discretized by means of a structured grid, not necessarily uniform, so that 
the internal volumes are rectangles, and not necessarily equal. The volumes close to the 
boundaries can be of different shapes and sizes, depending on the domain of definition. This 
implies that, where the solution requires a more accurate study, a refined grid can be used. 

OUR METHOD: 1D VERSION 

Consider the 1D convection diffusion equation 

defined on domain Ω, of boundary S, where φ is the dependent variable, u(x, t) the convective 
velocity, ρ the density, Γ the diffusion coefficient and Q the source term. 

Its conservative form is 

After Ω has been divided in n subdomains Ωi·, such that i Ωi = Ω, we impose the equation to be 
verified on each Ωi. In subdividing Ω we do not require the volumes to be equal (see Figure 2). 
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We define a grid of points on Ω and put the volume faces at mid-distance between any two 
consecutive nodes. Integration of (3) in space on a volume of amplitude Δx and in time between t 
and t + Δt with an explicit method yields 

where: 
the apex n + 1 refers to time instant t + Δt, 
the apex n to time instant t, 
cf = uΔt/Δx is the local Courant number (f = l or f = r), 
af= ΓΔt/Δx2 is the local diffusion parameter, 
Q is the space-time average of the source term. 
Consider ul, the convective velocity on the left face of a given volume, to be positive; if this is 

not the case, all is equally applied by the reverse node ordering. With the assumption of positive 
velocity we define for face l of the control volume of Figure 2 a quadratic profile interpolating the 
unknown solution at nodes i - 2, i - 1, i (2 in the upstream direction, 1 in the downstream one). If 
the amplitudes of intervals [i - 2, i - 1] and [i - 1, i] are h and vh respectively, the expression of 
our profile on the left face of the volume is, 

Obviously, if ν = 1, i.e. if the involved intervals are equal, profile (5) reduces to QUICK. 
Although the volumes are not equal, for a C3 solution this profile yields a truncation error of 

i.e. it provides a third order approximation. For the diffusive part (if any) centred differences are 
used, so that the order of approximation of the method for solving (3) reduces to the second. 

The approximation of boundary conditions can be performed in several ways: if Dirichlet 
conditions are given, their value is used at the boundary point (i.e. the boundary face of the 
first/last volume), while the derivative can be approximated by centred differences if an external 
fictitious point is introduced. Otherwise generalized finite difference formulae (GFDF) of the 
desired order7, based on a completely asymmetric stencil, can be used, both for the 
aforementioned situation and for the case when boundary conditions involving the normal 
derivative are given. With the second choice, the order of approximation can be as high as wanted, 
but some computational cost has to be paid for the different treatment of boundary volumes. 

For this reason, in the interior of the domain, our method is rather similar to QUICK, apart from 
the fact that, wherever the solution is smooth enough, a lower number of volumes can be used, 
thanks to the non-uniform mesh. 

The main difference between the two methods is in the treatment of boundary conditions, 
which, in our method, are approximated with higher precision, i.e. by GFDF of third order, with 
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no external fictitious points. Actually in QUICK one or two external fictitious points are 
introduced for the approximation of the convective term on both faces of the first/last volume. 

In our method, the non-uniform size of the volumes does not require the introduction of any 
fictitious point, since we can use the information given by boundary conditions by defining a 
boundary node on the boundary face of the first/last volume. For a wider description of the 
treatment of boundary conditions see the 2D version of our method in a subsequent section. 

SMOOTHING 

A problem connected with discontinuities (Γ = 0 in equation (3)) in the solution or with high 
gradients is the oscillatory behaviour the numerical solution can exhibit in many FV methods. 
Several interesting results were obtained to overcome this difficulty8-10 and, among others, the 
study of NVD profiles11. NVD variables are very interesting because they allow defining 
sufficient conditions in order that profiles be monotonic, as in Sweby12 to guarantee that the 
scheme enjoys the property of total variation diminishing. 

In Leonard11 monotonicity of some FV profiles (e.g. TVD) is considered: these profiles are 
extremely effective for some classes of problems, but they turn out to be inadequate for other 
types of benchmark problems. A normalization such as 

(see Figure 3) produces the very interesting advantage that Φ* does not depend on ΦD and ΦU 
(which become 1 and 0, respectively), so that its expression becomes much simpler. Besides 
simplicity, it was shown6 that the third order of approximation and stability on equal volumes are 
ensured whenever the NVD profile includes point Q = (1/2, 3/4), with derivatives at Q of 3/4. 

If we work at our quadratic profile on unequal volumes, a generalized point 

comes out and the derivative at it becomes ν + 2/4. The third order still holds, as discussed above. 
By replacing ν = 1, i.e. on equal volumes Q1 reduced to Q and the derivative takes on value 3/4. 

For the "critical" regions we are therefore looking for a profile verifying the following 
conditions: 

The simpler monotonic profile which can verify the above conditions is cubic and, for a face f 
in the unit square, it has the following expression: 

By imposing Φ* (0.5) < 1 we obtain a condition on the ratio ν to ensure the order of 
approximation be maintained. Such a condition is 

which, in fact, we replace with the strictest condition 
vε[1/3,3] (9) 

because of similarity reasons to those we obtained in1. 
Out of the unit square we use our quadratic profile (in NVD), a part for the immediate vicinity 

of the unit square itself, where linear profiles are used to connect ours to the origin, on the left, and 
to point (1, 1), on the right. 
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A similar strategy was introduced in Leonard and Mokhtari13, to build a EULER-QUICK 
profile, which uses a combination of QUICK and Exponential Upwinding profiles in the unit 
square, and of upwind and centred differences approximations out of the unit square. 

Comparison of numerical results of our method with those provided by EULER-QUICK on the 
classical benchmark problems5 showed a high similarity, with a slightly higher numerical 
diffusion for our method, but with a significantly lower number of volumes and a lower 
computational cost. For a different strategy, which provides intrinsically monotonic profiles of 
third order, see Pennati et al.1. 

VON-NEUMANN STABILITY 

For the 1D version of our method, with unequal volumes, we studied stability by applying the 
finite Fourier transform φl of the numerical solution φί(i = 0,1, ...,M-1, where Μ is the number 
of nodes) on a domain of amplitude L, for a pure convection equation, with an explicit temporal 
discretization, i.e. for the formulation 

The Fourier transform is inverted, then it is applied to all the terms appearing in (10). By 
equating the corresponding coefficients we obtain 
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where 

xl is the current abscissa and j is the imaginary unit. 
In terms of the phase variable ϑ = 2Πxl/L, the amplification factor14·15 

is therefore 
G = a exp (- 2jϑ) + β exp (- jϑ) + 1 + γ + δ exp (jϑ) (12) 

By the necessary and sufficient condition |G| ≤ 1, which ensures stability on an infinite domain, 
we obtain 

which provides a stability region as in Figure 4. 
A few comments on Figure 4: the values for ν (the ratio between amplitudes of two consecutive 

volumes were chosen in interval [1/3, 3], as discussed previously, although, in practice, 
refinements are performed by halving the amplitudes of volumes where needed. The plotted 
surface shows how the values of ν and ϑ (i.e. the relative volume sizes and the position in the 
domain) influence stability. 
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It can be seen that the strongest limitations correspond to ϑ = 0 and ϑ = 2π, whatever v. We 
remark, however, that these values of ϑ represent the left and right boundaries of the domain 
respectively, where a different type of computation is adopted, so that these bounds do not in fact 
apply. Obviously, if refinements are actually performed in some region of the domain and if they 
imply halving the amplitude of some volume, the sections of the plotted surface to be considered 
in order to find the appropriate stability conditions are those relative to ν = 0.5 and to ν = 2, since, 
if some critical region is in the interior of the domain, the volume size is halved immediately 
before and doubled immediately after that region. 

The stability region relative to ν = 2 is shown in Figure 5. Bounds for Δt are the straightforward 
consequence of (13). 

OUR METHOD: 2D VERSION 

The 2D method we devised was inspired by some basic purposes: first of all we wanted to be able 
to deal with general shape domains without transforming them into computational rectangles; it 
was therefore essential for the volumes not to need equal shapes and sizes. Moreover, we wanted 
accurate profiles and a precise approximation of boundary conditions while we did not want 
oscillatory behaviours. We are going to describe the main steps of our method. 

First of all, given a physical domain Ω C IR2 of general shape we define a polygonal 
approximation of its boundary16. Each side of the polygonal region is defined by its endpoints and 
for each vertex incidence information is recorded. For each side (or piece of side) the type of 
given boundary conditions is identified. Subsequently a structured non-uniform mesh is defined 
in such a way that no grid line crosses vertices of the polygonal region. The volumes are built by 
putting their faces on the boundary or at mid-distance between any two consecutive grid lines. 

For boundary volumes, whenever a situation such as that in Figure 6 occurred, we introduced 
inclined sides as in Figure 7, so that a volume face is always in common to exactly two volumes 
(actually, when this is not the case, conservation could be lost). 

The problem to be solved, in 2D, is 

which, in discrete form becomes 
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where Αi are the volume areas, Li are the oriented lengths of its faces, QS and QV are the surface 
and volume sources, respectively (the sum is over all the sides of the control volume CV), FC and 
FD are the convective and diffusive fluxes, integrated on volume sides. 

As already done in 1D, we defined a quadratic profile in two variables and kept the upwind 
philosophy for the choice of the interpolation points. If, for instance, for the control volume of 
Figure 8, we assume the velocity components ux and uy to be positive, for face l of the control 
volume our profile turns out to be 

φl = Αφρ1 + Βφρ2 + Cφρ3 + Βφρ4 + ΕφΡ5 + FφΡ6 (16) 
where coefficients A, Β, C, D, Ε, F are combinations of the co-ordinates of points P1, P2, P3, P4, 
P5, P6 and of the physical volume dimension: 
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where the above co-ordinates are defined with respect to a local co-ordinate system with origin at 
P, so that P1 = (- h, 0), P2 = (- k, 0), P3 = (h, 0), PA = (- h, a), P5 = (- h, - 6), P6 = (h, - c), with 
h = dk, q is the half distance between Ρ7 and P3 and s is the half distance between P6 and P3. 

For smooth enough solutions, this profile yields a second order approximation, (the third in the 
x direction) as can easily be verified by Taylor series expansion. 

For boundary volumes we decided, whenever possible, to keep a uniform strategy of treatment 
as for internal volumes: this implied, for the approximation of the diffusive term, the introduction 
of some external fictitious points, which could subsequently be eliminated by means of boundary 
conditions. When a little additional computational cost is accepted and the order of approximation 
is of relevance, the diffusive term is approximated by asymmetric GFDF, without defining 
external fictitious points. 

When inclined sides have to be introduced between two volumes (V1 and V2 of Figure 7, say), 
if we have Dirichlet boundary conditions, we approximate the convective term by the average of 
values at points P1, P2, F1 and F2, while the value of the diffusive term on the inclined side is set 
to the value at P3 or to the average of values at F1 and F2; if boundary conditions are of Neumann 
type, the normal derivative on the inclined side is attributed the value it takes on at P3. 

Obviously, this is not the only possible choice, but our first aim here was simplicity and low 
computational cost, more than the local order of approximation. 

For the approximation of derivatives of the unknown solution we adopted centred differences 
or GFDF, depending on the position of the volume face at study. 

BOUNDARY CONDITIONS 

We are now going to describe how our method acts with respect to the classical types of boundary 
conditions. 

If boundary conditions are of INFLOW type, they can assign the value of the dependent 
variable or both the values of the normal derivative and of the dependent variable at the boundary. 

When both values are available, convective and diffusive terms are directly integrated on the 
boundary faces; moreover, the value of φ at the boundary nodes can be used in the approximation 
relative to the internal faces of the same volume. 

When, on the contrary, no information on the normal derivative is given, if a diffusive term is 
present, an external fictitious point is introduced or asymmetric GFDF are used (see Appendix). 
The value of the dependent variable at such an external point is computed by quadratic 
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extrapolation, obtained by means of the 1D profile (5), with the obvious changes in node names. 
The value of the normal derivative at point F is approximated to second order by means of GFDF 
involving points P1, P2, P3, P4, P5 and E1 (Figure 9). 

If we are assigned NOFLOW boundary conditions, the velocity field is null at the boundary and 
the convective term vanishes. 

If the value of the normal derivative is given, the value of φ at the boundary node is determined 
by GFDF of third order (with no external point). If the value of φ at the boundary is given, GFDF 
of second order (with no external point) are used for the approximation of the normal derivative 
at F (Figure 9). 

Finally, if OUTFLOW boundary conditions are given, the standard choice is to assume null 
gradient or null curvature at the boundary. We adopted the first choice and approximated the 
dependent variable φ by imposing ∂φ/∂n = 0 at the boundary node F by means of GFDF. 

We remark that the approximation of φ, or of its normal derivative, by means of GFDF at the 
boundary of general shaped domains can be obtained, at the desired order of approximation, by 
proper Taylor expansions and no external fictitious points need be introduced16. 

SMOOTHING OF THE SOLUTION 

At the first time instant, a numerical solution is obtained by means of our quadratic profile. If 
some oscillations are detected, a smoothing procedure is adopted. Such procedure is now 
described for face l of the control volume in Figure 8. The smoothing technique is repeated, with 
obvious changes, for all of the faces of the control volume; its aim is the imposition of 
monotonicity, on each volume face, along the direction orthogonal to the face itself. For the left 
face of the volume (Figure 8) our profile is 

+ R1φP1 + R2φP3 + DφΡ4 + ΕφΡ5 + FφP6 (18) 
where we can single out a linear contribution 

φlίn = (φP1+φP3)/2, (19) 
a term we can name "normal curvature" 

and a term which, for equisized volumes, represents a transverse curvature, so that, by extension, 
we shall again name "transverse curvature" 

tcurv = R1φP1 + R2φP3 + DφΡ4 + ΕφΡ5 + FφΡ6. (21) 
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Therefore our profile is composed by a unidirectional contribution (19), (20), which equals the 
1D profile (5) and by a term (21), giving the contribution of the second dimension. 

For the sake of simplicity we worked at the 2D shape preserving by considering monotonicity 
with respect to the direction orthogonal to the volume face at study. 

In order, e.g. to impose monotonicity with respect to variable x, on the face l of Figure 8, it is 
sufficient to replace the first two terms by the cubic profile described earlier, or its extensions out 
of the unit square. The resulting profile is therefore 

φl = φP2 + (φP - φP2) φ*
l + RφP1 + R2φΡ3 + DφP4 + EφP5

 + FφP6 (22) 
where, by setting v = 2h/(k - h), we have: 

where Φ* is the NVD transformed variable and P2 and P3 are the upstream and downstream 
nodes, respectively. 

At the subsequent time instants, depending on the a priori knowledge we have on the solution, 
we can adopt a predictor-corrector attitude, by which the quadratic profile is used and replaced by 
the cubic one in the regions of high gradient. 

NUMERICAL EXAMPLES IN 1D 

In order to test the performance of our method, we solved an advection unsteady 1D equation: 

on interval [0, 1], with inflow boundary conditions φ (0) = 1. Its analytical solution is 

The comparison between our results (represented by a series of dots) and the analytical solution 
(represented by the continuous line) and that between an upwind scheme and the analytical 
solution are shown in Figure 10. 

A parabolic stationary equation was also solved13: 

with 

In Figure 11 the centred solution, the QUICK solution and our solution are represented. 

NUMERICAL EXAMPLES IN 2D 

In order to test effectiveness of our method we solved some 2D problems. 

Problem 1: the stationary equation 

was studied on the square domain [-0.5, 0.525] X [-0.5, 0.525]. 
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The analytical solution of equation (28) is 
φ (x, y) = 0.09327 + (2.7Ε -14) exp (ux + vy). (29) 

In total, 289 volumes were defined with different sizes: a finer subdivision was defined where 
the gradient of the solution is high. The numerical solution with refinements and the analytical 
solution are represented in Figure 12. 
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Problem 2: the stationary equation proposed in Shih et al.17 

where 
S = - 8 (24y (x4 - 2x3 + x2) + (12x2 - 12x + 2) (4y3 - 2y)) + (31) 

- 6 4 (x 4 - 2x3 + x2) (4x3 - 6x2 + 2x) ((y4 - y2) (12y2 - 2) - (4y3 - 2y) 
and the velocity components are: 

u (x, y) = 8(x4 - 2x3 + x2 ) (4y3 - 2y) (32) 

v(x, y) = -8(4x3- 6x2 + 2x)(y4 - y2) 
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The problem was solved on domain of Figure 13, subdivided in 88 volumes (neither equisized 
nor equishaped). The representation is on the unit square because of the graphical code. 

The analytical and the numerical solutions are represented in Figure 14 and the maximum error 
at internal volumes is 1.73E - 3, while at boundary volumes the maximum error is 5.1Ε - 3. 
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Problem 3: the unsteady equation proposed in Nguyen18 

was solved on the square [- 0.5, 0.5] X [- 0.5, 0.5], with an explicit time advance technique. 
The analytical solution is 

with σ (t) = σ0 (1 + 2Γt/σ0
2)1/2, σ0 = 0.0707. 

The domain was divided in 840 volumes. The analytical solution and the numerical solution are 
represented in Figures 15, 16 and 17, at time instants 0, 0.25, 0.5. The maximum errors were 
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7.E - 3, 1.2E - 1 and 2.E - 01 respectively. To obtain this numerical solution we used the 
smoothing technique presented previously. 

In order to compare our results to those presented in Nguyen18, we also solved problem 3 on the 
unit square divided in 16 volumes and evaluated the error as in Nguyen18: 
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We obtained errors of 0.31 for an explicit time advance technique, 0.29 for a Crank-Nicholson 
one and 0.36 for an implicit technique, while in Nguyen18 the error is of 0.35 for a Petrov-
Galerkin method with Crank-Nicholson technique. 

CONCLUSION 

In this paper a parabolic 1D profile which generalizes the well-known profile QUICK, by using 
not necessarily equisized volumes, has been presented. 
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A simple cubic non-linear 1D profile is used in the regions of high gradient to suppress 
spurious oscillations. 

Finally, a 2D generalization has been proposed which, for not necessarily equisized or 
equishaped volumes, provides an effective numerical solution with a high order approximation of 
boundary conditions (even of Neumann type) on a polygonal approximation of the domain. By 
generalizing the 1D cubic profile, spurious oscillations are suppressed also in the 2D formulation. 

The numerical results presented confirm the effectiveness of the refining technique. The 
method can easily be extended for the solution of scalar equations defined on 3D domains and has 
been used as a basis for the solution of Navier-Stokes problems defined on 2D domains19,20. 
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APPENDIX 

In this appendix we show, as an example of GFDF, the formulae we use for the approximation of 
the normal derivative at boundary point F of Figure 6. We write 

where α and ζ are the angles between the normal direction and the co-ordinate axes x and y, 
respectively. 

For a third order approximation of the normal derivative, we therefore need the partial 
derivatives to be of third order. We have: 

or, by asymmetric stencil, 

For the partial derivative with respect to variable y at F the problem of missing information 
arises, since no grid points aligned with F are available. 

Therefore a truncated Taylor expansion of the missing derivative is written: 

where the partial derivatives in the formula above must be approximated to third, second and first 
order, respectively. Their approximations are: 

For the third mixed derivative we give a more general formula, with respect to variables ξ and 
η, which, in turn will represent x and y. The points needed for the order of approximation required 
are in a greater number than in Figure 6. If, for example, we use a stencil as in Figure A1, the 
approximation for the third derivative is as follows: 
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where 


